4.7 Article

Obstructive nephropathy: Insights from genetically engineered animals

期刊

KIDNEY INTERNATIONAL
卷 68, 期 3, 页码 925-937

出版社

ELSEVIER SCIENCE INC
DOI: 10.1111/j.1523-1755.2005.00486.x

关键词

renal fibrosis; ureteral obstruction; genetically engineered animals; myofibroblasts; extracellular matrix

向作者/读者索取更多资源

Congenital obstructive nephropathy is the primary cause for end-stage renal disease (ESRD) in children. An increasingly used animal model of obstructive nephropathy is unilateral ureteral obstruction (UUO). This model mimics, in an accelerated manner, the different stages of obstructive nephropathy leading to tubulointerstitial fibrosis: cellular infiltration, tubular proliferation and apoptosis, epithelial-mesenchymal transition (EMT), (myo)fibroblast accumulation, increased extracellular matrix (ECM) deposition, and tubular atrophy. During the last decade genetically modified animals are increasingly used to study the development of obstructive nephropathy. Although the use of these animals (mainly knockouts) has highlighted some pitfalls of this approach (compensation by closely related gene products, absence of temporal knockouts) it has brought important information about the role of specific gene-products in the pathogenesis of obstructive nephropathy. Besides confirming the important pathologic role for angiotensin II (Ang II) and transforming growth factor-beta (TGF-beta) in obstructive nephropathy, these animals have shown the complexity of the development of tubulointerstitial fibrosis involving a large number of closely functionally related molecules. More interestingly, the use of these animals has led to the discovery of unexpected and contradictory roles (both potentially pro- and antifibrotic) for Ang II, for ECM degrading enzymes matrix metalloproteinase 9 (MMP-9) and tissue plasminogen activators (PAs), for plasminogen activator inhibitor 1 (PAI-1), and for the adhesion molecule osteopontin (OPN) in obstructive nephropathy. Further use of these animals, especially in combination with pharmacologic tools, should help to better identify potential antifibrotic strategies in obstructive nephropathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据