4.7 Article

Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system

期刊

INORGANIC CHEMISTRY
卷 44, 期 18, 页码 6393-6400

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ic0502426

关键词

-

向作者/读者索取更多资源

Zinc selenide nanoparticles (ZnSe NPs) were synthesized in the cavity of the cage-shaped protein apoferritin by designing a slow chemical reaction system, which employs tetraaminezinc ion and selenourea. The chemical synthesis of ZnSe NPs was realized in a spatially selective manner from an aqueous solution, and ZnSe cores were formed in almost all apoferritin cavities with little bulk precipitation, Three factors are found to be important for ZnSe NP synthesis in the apoferritin cavity: (1) the threefold channel, which selectively introduces zinc ion into the apoferritin cavity, (2) the apoferritin internal potential, which favors zinc ion accumulation in the cavity, and (3) the nucleation site, which nucleates ZnSe inside the cavity, The characterization of the synthesized ZnSe NPs by X-ray powder diffraction and energy-dispersive spectrometry revealed that the synthesized NPs are a collection of cubic ZnSe polycrystals. It was shown that the 500 degrees C heat treatment for 1 h under nitrogen gas transformed the polycrystalline ZnSe core into a single crystal, and single-crystal ZnSe NPs free of protein were obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据