4.8 Article

Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0506139102

关键词

-

向作者/读者索取更多资源

Studies of expressed sequence tag data sets have revealed large numbers of splicing variants for human genes, but it remains challenging to distinguish functionally important variants from aberrant splicing, clarify the nature of the alternative functions, and understand the signals that regulate splicing choices. To help address these issues, we have constructed and analyzed a large data set of 1,478 exon-skipping alternative splicing (AS) variants evolutionarily conserved in human and mouse. In about one-fifth of cases, one isoform appears subject to nonsense-mediated mRNA decay (NMD), supporting the idea that a major role of AS is to regulate gene expression; one-quarter of these NMD-inducing cases involve a conserved exon whose apparent sole purpose is to mediate destruction of the message when included. We explore sequence conservation likely related to splicing regulation, using in part a measure of the overall amount of conserved information in a sequence, and find that the increased conservation that has been observed within AS exons primarily affects synonymous sites, suggesting that regulatory signals significantly constrain synonymous substitution rates. We show that a lower frequency of the inclusion isoform relative to the exclusion isoform tends to be associated with weaker splice site signals, smaller exon size, and higher intronic sequence conservation, and provide evidence that all of these factors are under selection to control relative isoform frequencies. Some conserved instances of AS appear to represent aberrant splicing events that by chance have occurred in both species, and we develop a nonparametric likelihood approach to identify these.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据