4.2 Article

Bound-state corrections in laser-induced nonsequential double ionization

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-4075/38/17/014

关键词

-

向作者/读者索取更多资源

We perform a systematic analysis of how nonsequential double ionization in intense, linearly polarized laser fields is influenced by the initial states in which both electrons are bound and by the residual ionic potential. We assume that the second electron is released by electron-impact ionization of the first electron with its parent ion, using an S-matrix approach. We work within the strong-field approximation and compute differential electron-momentum distributions using saddle-point methods. Specifically, we consider electrons in 1s, 2p, 3p and localized states, which are released by either a contact- or a Coulomb-type interaction. We also perform an adequate treatment of the bound-state singularity which is present in this framework. We show that the momentum distributions are very sensitive with respect to spatially extended or localized wavefunctions, but are not considerably influenced by their shapes. Furthermore, the modifications performed in order to overcome the bound-state singularity do not significantly alter the momentum distributions, apart from a minor suppression in the region of small momenta. The only radical changes occur if one employs effective form factors, which take into account the presence of the residual ion upon rescattering. If the ionic potential is of contact type, it outweighs the spreading caused by a long-range electron-electron interaction or by spatially extended bound states. This leads to momentum distributions which exhibit a very good agreement with the existing experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据