4.5 Article

Accumulation of Werner protein at DNA double-strand breaks in human cells

期刊

JOURNAL OF CELL SCIENCE
卷 118, 期 18, 页码 4153-4162

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02544

关键词

Werner protein; double-strand breaks; laser irradiation; damage accumulation; HRDC domain

资金

  1. NCI NIH HHS [CA78088] Funding Source: Medline

向作者/读者索取更多资源

Werner syndrome is an autosomal recessive accelerated-aging disorder caused by a defect in the WRN gene, which encodes a member of the RecQ family of DNA helicases with an exonuclease activity. In vitro experiments have suggested that WRN functions in several DNA repair processes, but the actual functions of WRN in living cells remain unknown. Here, we analyzed the kinetics of the intranuclear mobilization of WRN protein in response to a variety of types of DNA damage produced locally in the nucleus of human cells. A striking accumulation of WRN was observed at laser-induced double-strand breaks, but not at single-strand breaks or oxidative base damage. The accumulation of WRN at double-strand breaks was rapid, persisted for many hours, and occurred in the absence of several known interacting proteins including polymerase P, poly(ADP-ribose) polymerase 1 (PARP1), Ku80, DNA-dependent protein kinase (DNA-PKcs), NBS1 and histone H2AX. Abolition of helicase activity or deletion of the exonuclease domain had no effect on accumulation, whereas the presence of the HRDC (helicase and RNaseD C-terminal) domain was necessary and sufficient for the accumulation. Our data suggest that WRN functions mainly at DNA double-strand breaks and structures resembling double-strand breaks in living cells, and that an autonomous accumulation through the HRDC domain is the initial response of WRN to the double-strand breaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据