4.4 Article

Simulation studies on multimode heat transfer from a square-shaped electronic device with multiple discrete heat sources

期刊

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
卷 48, 期 5, 页码 427-446

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407780590956991

关键词

-

向作者/读者索取更多资源

The results of a numerical study of the problem of multimode heat transfer from a square-shaped electronic device provided with three identical flush-mounted discrete heat sources are presented here. Air, a radiatively nonparticipating fluid, is taken to be the cooling medium. The heat generated in the discrete heat sources is first conducted through the device, before ultimately being dissipated by convection and surface radiation. The governing partial differential equations for temperature distribution are converted into algebraic form using a finite-volume based finite difference method, and the resulting algebraic equations are subsequently solved using Gauss-Seidel iterative procedure. A grid size of 151 x 91 is used for discretizing the computational domain. The effects of all relevant parameters, including volumetric beat generation, thermal conductivity, convection heat transfer coefficient, and surface emissivity, on various important results, such as the local temperature distribution, the peak temperature of the device, and the relative contributions of convection and surface radiation to heat dissipation from the device, are studied in sufficient detail. The exclusive effect of surface radiation on pertinent results of the present problem is also brought out.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据