4.8 Article

Protein kinase Cε is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy

期刊

CANCER RESEARCH
卷 65, 期 18, 页码 8366-8371

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-0553

关键词

-

类别

资金

  1. NCI NIH HHS [R01CA77612, P50CA97248, P30CA46592] Funding Source: Medline
  2. NCRR NIH HHS [M01-RR00042] Funding Source: Medline

向作者/读者索取更多资源

Tumor metastasis is the major cause of morbidity and mortality in patients with breast cancer. It is critical to identify metastasis enabling genes and understand how they are responsible for inducing specific aspects of the metastatic phenotype to allow for improved clinical detection and management. Protein kinase C epsilon (PKC epsilon), a member of a family of serine/threonine protein kinases, is a transforming oncogene that has been reported to be involved in cell invasion and motility. In this study, we investigated the role of PKC epsilon in breast cancer development and progression. High-density tissue microarray analysis showed that PKC epsilon protein was detected in 73.6% (106 of 144) of primary tumors from invasive ductal breast cancer patients. Increasing PKCe staining intensity was associated with high histologic grade (P = 0.0206), positive Her2/neu receptor status (P = 0.0419), and negative estrogen (P = 0.0026) and progesterone receptor status (P = 0.0008). Kaplan-Meier analyses showed that PKC epsilon was significantly associated with poorer disease-free and overall survival (log-rank, P = 0.0478 and P = 0.0414, respectively). RNA interference of PKCe in MDA-MB231 cells, an aggressive breast cancer cell line with elevated PKC epsilon levels, resulted in a cell phenotype that was significantly less proliferative, invasive, and motile than the parental or the control RNA interference transfectants. Moreover, in vivo tumor growth of small interfering RNA-PKC epsilon MDA-MB231 clones was retarded by a striking 87% (P < 0.05) and incidence of lung metastases was inhibited by 83% (P < 0.02). PKC epsilon-deficient clones were found to have lower RhoC GTPase protein levels and activation. Taken together, these results revealed that PKC epsilon plays a critical and causative role in promoting an aggressive metastatic breast cancer phenotype and as a target for anticancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据