4.6 Article

Theory of strain states in InAs quantum dots and dependence on their capping layers

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2041846

关键词

-

向作者/读者索取更多资源

The dependence of strain states in InAs self-assembled quantum dots (QDs) on their capping layers was investigated by valence-force field model calculations. An InAs QD on (001) GaAs and embedded in a GaNAs capping layer and the one with its dot surface terminated with nitrogen (N) and embedded in a GaAs capping layer show reduced compressive strain within the QDs in the (001) growth plane due to the lateral expansion of the QDs, while the one embedded in an InGaAs capping layer shows enhanced tensile strain along the [001] growth direction. The strain energies around the center of the InAs QDs with the GaNAs capping layer and with the N-surface termination are lowered compared with those for conventional GaAs capping layers. The burying conditions of InAs QDs also modify the sizes of QDs. The stress distributions obtained by strain energy mapping showed that In atoms around the top of QDs undergo inward stress. This inward stress prevents In segregation and explains the experimentally observed improved optical properties of GaNAs-embedded and N-terminated QDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据