4.7 Article

Molecular-dynamics simulations for nonclassical kinetics of diffusion-controlled bimolecular reactions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2035081

关键词

-

向作者/读者索取更多资源

Molecular-dynamics simulations are presented for the diffusion-controlled bimolecular reaction A+B double left right arrow C in two and three dimensions. The reactants and solvent molecules are modeled as spheres interacting via continuous potential-energy functions. The interaction potential between two reactants contains a deep well that results in a reaction. When the solvent concentration is low and the reactant dynamics is essentially ballistic, the system reaches equilibrium rapidly, and the reaction follows classical kinetics with exponential decay to the equilibrium. When the solvent concentration is high the particles enter the normal diffusion regime quickly and nonclassical behavior is observed, i.e., the reactant concentrations approach equilibrium as t(-d/2) where d is the dimensionality of space. When the reaction well depth is large, however, the reaction becomes irreversible within the simulation time. In this case the reactant concentrations decay as t(-d/4). Interestingly this behavior is also observed at intermediate times for reversible reactions. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据