4.7 Article

Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows - Part II: Multi-dimensional limiting process

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 208, 期 2, 页码 570-615

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.02.022

关键词

multi-dimensional limiting function; multi-dimensional limiting process; multi-dimensional flows; entropy condition; higher order spatial accuracy

向作者/读者索取更多资源

Through the analysis of conventional TVD limiters, a new multi-dimensional limiting function is derived for an oscillation control in multi-dimensional flows. And, multi-dimensional limiting process (MLP) is developed with the multi-dimensional limiting function. The major advantage of MLP is to prevent oscillations across a multi-dimensional discontinuity, and it is readily compatible with more than third order spatial interpolation. Moreover, compared with other higher order interpolation schemes such as ENO type schemes, MLP shows a good convergence characteristic in a steady problem and it is very simple to be implemented. In the present paper, third and fifth order interpolation schemes with MLP, named MLP3 and MLP5, are developed and tested for several real applications. Through extensive numerous test cases including an oblique stationary contact discontinuity, an expansion fan, a vortex flow, a shock wave/vortex interaction and a viscous shock tube problem, it is verified that MLP combined with M-AUSMPW+ numerical flux substantially improves accuracy, efficiency and robustness both in continuous and discontinuous flows. By extending the current approach to three-dimensional flows, MLP is expected to reduce computational cost and enhance accuracy even further. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据