4.5 Article

Self-consistent electron acceleration due to inertial Alfven wave pulses

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004JA010877

关键词

-

向作者/读者索取更多资源

We present self-consistent kinetic simulations of the electron response to finite duration shear Alfven wave pulses in a magnetized plasma. In Earth's magnetosphere, the evidence suggests that parallel electric fields in inertial scale shear Alfven waves can accelerate electrons in the geomagnetic field-aligned direction. Here, we study large-amplitude wave forms as they travel through ambient plasma at phase velocities which are consistent with resonant electron acceleration predicted by linear kinetic theory. Our self-consistent simulations reveal that the wave potential evolves nonlinearly as shear Alfven wave pulses travel through the simulation domain. The evolution of the wave pulse from a symmetrical to a nonsymmetrical potential structure, and the large perturbation in the distribution function required to carry the parallel current of the pulse, leads to nonresonant acceleration of electrons (i.e., acceleration of electrons which are not traveling at the same velocity as the wave). We compare the signature of resonant and nonresonant electron acceleration with data from a low-altitude spacecraft and suggest an explanation for features often referred to as field-aligned suprathermal electron bursts. Finally, we discuss how resonant and nonresonant acceleration of electrons is affected by the perpendicular wavelength and amplitude of shear Alfven wave pulses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据