4.6 Article

Differential regulation of CDP/Cux p110 by cyclin A/Cdk2 and cyclin A/Cdk1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 38, 页码 32712-32721

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505417200

关键词

-

向作者/读者索取更多资源

Previous experiments with peptide fusion proteins suggested that cyclin A/Cdk1 and Cdk2 might exhibit similar yet distinct phosphorylation specificities. Using a physiological substrate, CDP/Cux, our study confirms this notion. Proteolytic processing of CDP/Cux by cathepsin L generates the CDP/Cux p110 isoform at the beginning of S phase. CDP/Cux p110 makes stable interactions with DNA during S phase but is inhibited in G(2) following the phosphorylation of serine 1237 by cyclin A/Cdk1. In this study, we propose that differential phosphorylation by cyclin A/Cdk1 and cyclin A/Cdk2 enables CDP/Cux p110 to exert its function as a transcriptional regulator specifically during S phase. We found that like cyclin A/Cdk1, cyclin A/Cdk2 interacted efficiently with recombinant CDP/Cux proteins that contain the Cut homeodomain and an adjacent cyclin-binding motif (Cy). In contrast to cyclin A/Cdk1, however, cyclin A/Cdk2 did not efficiently phosphorylate CDP/Cux p110 on serine 1237 and did not inhibit its DNA binding activity in vitro. Accordingly, co-expression with cyclin A/Cdk2 in cells did not inhibit the DNA binding and transcriptional activities of CDP/Cux p110. To confirm that the sequence surrounding serine 1237 was responsible for the differential regulation by Cdk1 and Cdk2, we replaced 4 amino acids flanking the phosphorylation site to mimic a known Cdk2 phosphorylation site present in the Cdc6 protein. Both cyclin A/Cdk2 and Cdk1 efficiently phosphorylated the CDP/Cux(Cdc6) mutant and inhibited its DNA binding activity. Altogether our results help explain why the DNA binding activity of CDP/Cux p110 is maximal during S phase and decreases in G2 phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据