4.7 Article

Regulation of ventral surface chemoreceptors by the central respiratory pattern generator

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 39, 页码 8938-8947

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2415-05.2005

关键词

central chemoreceptors; medulla oblongata; ventral medullary surface; parafacial respiratory group; dendritic structure; respiratory modulation

资金

  1. NHLBI NIH HHS [HL 28785, R01 HL074011, R37 HL028785, R01 HL028785, HL 74011] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS033583] Funding Source: Medline

向作者/读者索取更多资源

The rat retrotrapezoid nucleus (RTN) contains neurons described as central chemoreceptors in the adult and respiratory rhythm-generating pacemakers in neonates [parafacial respiratory group (pfRG)]. Here we test the hypothesis that both RTN and pfRG neurons are intrinsically chemosensitive and tonically firing neurons whose respiratory rhythmicity is caused by a synaptic feedback from the central respiratory pattern generator (CPG). In halothane- anesthetized adults, RTN neurons were silent below 4.5% end-expiratory (e-exp) CO2. Their activity increased linearly (3.2 Hz/1% CO2) up to 6.5% (CPG threshold) and then more slowly to peak similar to 10 Hz at 10% CO2. Respiratory modulation of RTN neurons was absent below CPG threshold, gradually stronger beyond, and, like pfRG neurons, typically (42%) characterized by twin periods of reduced activity near phrenic inspiration. After CPG inactivation with kynurenate (KYN), RTN neurons discharged linearly as a function of e-exp CO2 (slope, +1.7 Hz/1% CO2) and arterial pH (threshold, 7.48; slope, 39 Hz/pH unit). In coronal brain slices (postnatal days 7-12), RTN chemosensitive neurons were silent at pH 7.55. Their activity increased linearly with acidification up to pH 7.2 (17 Hz/pH unit at 35 degrees C) and was always tonic. In conclusion, consistent with their postulated central chemoreceptor role, RTN/ pfRG neurons encode pH linearly and discharge tonically when disconnected from the rest of the respiratory centers in vivo (KYN treatment) and in vitro. In vivo, RTN neurons receive respiratory synchronous inhibitory inputs that may serve as feedback and impart these neurons with their characteristic respiratory modulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据