4.6 Article

Axotrophin and leukaemia inhibitory factor (LIF) in transplantation tolerance

出版社

ROYAL SOC
DOI: 10.1098/rstb.2005.1697

关键词

axotrophin; leukaemia inhibitory factor; transplantation tolerance; stem cells

类别

向作者/读者索取更多资源

Immune self-tolerance is controlled by a subset of T lymphocytes that are regulatory (Treg) and epigenetically programmed to suppress auto-reactive immune effector cells in vivo. By extrapolation, donor-specific transplantation tolerance might be controlled by donor-specific Treg that have acquired the appropriate epigenetic program for tolerance. Although such tolerance has yet to be achieved in man, proof of concept comes from mouse models where regulatory transplantation tolerance can be induced within the complex micro-environment of the spleen or draining lymph node. By studying whole spleen cell populations in a murine model of transplantation tolerance we have incorporated a complexity of environmental factors when looking for specific features that characterize tolerance versus aggression. This approach has revealed unexpected patterns of gene activity in tolerance and most notably that a novel stem cell gene, axotrophin, regulates T lymphocyte responsiveness both in terms of proliferation and in release of leukaemia inhibitory factor (LIF). Since LIF is a regulator of stem cells in addition to being a key neuropoietic cytokine, these preliminary results linking both axotrophin and LIF to transplantation tolerance lead us to propose that regulatory pathways encoded during the epigenetic development of Treg cells are related to pathways that regulate fate determination of stem cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据