4.6 Article

Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 39, 页码 33652-33659

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505473200

关键词

-

资金

  1. NIGMS NIH HHS [GM-52002] Funding Source: Medline

向作者/读者索取更多资源

Green fluorescent protein (GFP) fluoresces efficiently under blue excitation despite major electrostatic rearrangements resulting from photoionization of the chromophore and neutralization of Glu-222. A competing phototransformation process, which ionizes the chromophore and decarboxylates Glu-222, mimics the electrostatic and structural changes in the fluorescence photocycle. Structural and spectroscopic analysis of the cryogenically stabilized photoproduct at 100 K and a structurally annealed intermediate of the phototransformed protein at 170 K reveals distinct structural relaxations involving protein, chromophore, solvent, and photogenerated CO2. Strong structural changes of the 100 K photoproduct after decarboxylation appear exclusively within 15 angstrom of the chromophore and include the electrostatically driven perturbations of Gln-69, Cys-70, and water molecules in an H-bonding network connecting the chromophore. X-ray crystallography to 1.85 angstrom resolution and static and picosecond time-resolved IR spectroscopy identify structural mechanisms common to phototransformation and to the fluorescence photocycle. In particular, the appearance of a 1697 cm(-1) (+) difference band in both photocycle and phototransformation intermediates is a spectroscopic signature for the structural perturbation of Gln-69. This is taken as evidence for an electrostatically driven dynamic response that is common to both photoreaction pathways. The interactions between the chromophore and the perturbed residues and solvent are decreased or removed in the T203H single and T203H/Q69L double mutants, resulting in a strong reduction of the fluorescence quantum yield. This suggests that the electrostatic response to the transient formation of a buried charge in the wild type is important for the bright fluorescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据