4.5 Article

Thin-layer effects on the CPT qc measurement

期刊

CANADIAN GEOTECHNICAL JOURNAL
卷 42, 期 5, 页码 1302-1317

出版社

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/T05-036

关键词

cone tip resistance; modeling; sand; clay; interface influence distance; layering

向作者/读者索取更多资源

A numerical analysis is presented to model the cone penetration test (CPT) tip resistance in layered soil. Analyses are performed for two-layer soils composed of either sands with different relative densities or different materials (sand and clay). Parametric numerical modeling is used to determine the distance that a cone senses a new upcoming soil layer interface or a layer interface behind. Analyses are also carried out for a thin sand layer embedded in soft clay. It is seen that the full tip resistance may not be reached in thin stiff layers. This is especially true for penetration in thin dense sand layers interbedded in softer clay. A correction factor is suggested to correct the cone tip resistance in thin sand layers. The higher the stiffness and the thinner the layer, the larger the correction factor. The numerical results obtained in this paper are in good agreement with experimental observations. Some limitations of a previously proposed correction factor are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据