4.5 Article

Design and optimization of a compact, repetitive, high-power microwave system

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 76, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2093768

关键词

-

向作者/读者索取更多资源

The electrical characteristics and design features of a low inductance, compact, 500 kV, 500 J, 10 Hz repetition rate Marx generator for driving an high-power microwave (HPM) source are discussed. Benefiting from the large energy density of mica capacitors, four mica capacitors were utilized in parallel per stage, keeping the parasitic inductance per stage low. Including the spark-gap switches, a stage inductance of 55 nH was measured, which translates with 100 nF capacitance per stage to similar to 18.5 Omega characteristic Marx impedance. Using solely inductors, similar to 1 mH each, as charging elements instead of resistors enabled charging the Marx within less than 100 ms with little charging losses. The pulse width of the Marx into a matched resistive load is about 200 ns with 50 ns rise time. Repetitive HPM generation with the Marx directly driving a small virtual cathode oscilator (Vircator) has been verified. The Marx is fitted into a tube with 30 cm diameter and a total length of 0.7 m. We discuss the Marx operation at up to 21 kV charging voltage per stage, with repetition rates of up to 10 Hz in burst mode, primarily into resistive loads. A lumped circuit description of the Marx is also given, closely matching the experimental results. Design and testing of a low cost, all-metal Vircator cathode will also be discussed. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据