4.3 Article

Structured morphological modeling as a framework for rational strain design of Streptomyces species

出版社

SPRINGER
DOI: 10.1007/s10482-012-9760-9

关键词

Morphological modeling; Fermentation; Microscopy; Enzyme; Antibiotic; SsgA

资金

  1. VICI grant of the Netherlands Applied Research Council (STW) [10379]
  2. VIDI Grant from the Netherlands Organization for Scientific Research (NWO) [864.06.003]

向作者/读者索取更多资源

Successful application of a computational model for rational design of industrial Streptomyces exploitation requires a better understanding of the relationship between morphology-dictated by microbial growth, branching, fragmentation and adhesion-and product formation. Here we review the state-of-the-art in modeling of growth and product formation by filamentous microorganisms and expand on existing models by combining a morphological and structural approach to realistically model and visualize a three-dimensional pellet. The objective is to provide a framework to study the effect of morphology and structure on natural product and enzyme formation and yield. Growth and development of the pellet occur via the processes of apical extension, branching and cross-wall formation. Oxygen is taken to be the limiting component, with the oxygen concentration at the tips regulating growth kinetics and the oxygen profile within the pellet affecting the probability of branching. Biological information regarding the processes of differentiation and branching in liquid cultures of the model organism Streptomyces coelicolor has been implemented. The model can be extended based on information gained in fermentation trials for different production strains, with the aim to provide a test drive for the fermentation process and to pre-assess the effect of different variables on productivity. This should aid in improving Streptomyces as a production platform in industrial biotechnology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据