4.7 Article

Electronic excitation energies of molecules in solution within continuum solvation models: Investigating the discrepancy between state-specific and linear-response methods

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2039077

关键词

-

向作者/读者索取更多资源

In a recent article [R. Cammi, S. Corni, B. Mennucci, and J. Tomasi, J. Chem. Phys. 122, 104513 (2005)], we demonstrated that the state-specific (SS) and the linear-response (LR) approaches, two different ways to calculate solute excitation energies in the framework of quantum-mechanical continuum models of solvation, give different excitation energy expressions. In particular, they differ in the terms related to the electronic response of the solvent. In the present work, we further investigate this difference by comparing the excitation energy expressions of SS and LR with those obtained through a simple model for solute-solvent systems that bypasses one of the basic assumptions of continuum solvation models, i.e., the use of a single Hartree product of a solute and a solvent wave function to describe the total solute-solvent wave function. In particular, we consider the total solute-solvent wave function as a linear combination of the four products of two solute states and two solvent electronic states. To maximize the comparability with quantum-mechanical continuum model the resulting excitation energy expression is recast in terms of response functions of the solvent and quantities proper for the solvated molecule. The comparison of the presented expressions with the LR and SS ones enlightens the physical meaning of the terms included or neglected by these approaches and shows that SS agrees with the results of the four-level model, while LR includes a term classified as dispersion in previous treatments and neglects another related to electrostatic. A discussion on the possible origin of the LR flaw is finally given. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据