4.3 Article

Tolerance of Mesorhizobium type strains to different environmental stresses

出版社

SPRINGER
DOI: 10.1007/s10482-010-9539-9

关键词

Mesorhizobium; Stress; Temperature; Salt; pH; groEL

资金

  1. Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/BIO/80932/2006, SFRH/BPD/27008/2006]
  2. EU
  3. Fundação para a Ciência e a Tecnologia [SFRH/BPD/27008/2006, PTDC/BIO/80932/2006] Funding Source: FCT

向作者/读者索取更多资源

The symbiosis between rhizobia and legumes is affected by different environmental conditions. Our aims were to evaluate stress tolerance of Mesorhizobium species and investigate species-specific stress response mechanisms. Tolerance of Mesorhizobium type strains to temperature, salt and pH stress was evaluated. Mesorhizobium thiogangeticum showed highest growth with 1.5% NaCl and Mesorhizobium ciceri at pH 5. Mesorhizobium plurifarium showed higher growth at 37A degrees C. SDS-PAGE analysis revealed changes in the protein profiles, namely the overexpression of a 60 kDa protein, following heat stress. Under salt stress, five overexpressed proteins were identified in M. plurifarium and M. thiogangeticum. Northern analysis revealed an increase in groEL expression in Mesorhizobium huakuii and Mesorhizobium septentrionale after heat shock; by contrast, a decrease was detected in Mesorhizobium albiziae and M. thiogangeticum, upon salt shock. A high diversity in tolerance to temperature, salt and pH stress was detected among Mesorhizobium species. M. thiogangeticum and M. ciceri are moderately halophilic and acidophilic, respectively. Several proteins, overproduced in different strains, may be involved in stress tolerance. groEL expression increased upon heat and decreased upon salt shock. To our knowledge, this is the first study focusing tolerance to temperature, salt and pH stress, as well as groEL expression, in Mesorhizobium type strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据