4.2 Article

'Universal' primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides

期刊

WEED RESEARCH
卷 45, 期 5, 页码 323-330

出版社

WILEY
DOI: 10.1111/j.1365-3180.2005.00467.x

关键词

acetyl-coenzyme A carboxylase; ACCase; herbicide; PCR; resistance; sequencing

向作者/读者索取更多资源

Primers were designed to amplify two regions involved in sensitivity to herbicides inhibiting the plastidic acetyl-CoA carboxylase (ACCase) from grasses (Poaceae). The first primer pair amplified a 551-bp amplicon containing a variable Ile/Leu codon at position 1781 in Alopecurus myosuroides sequence. The second primer pair amplified a 406-bp amplicon containing four variable codons (Trp/Cys, Ile/Asn, Asp/Gly, Gly/Ala) at positions 2027, 2041, 2078 and 2096, respectively, in A. myosuroides sequence. Both primer pairs amplified the targeted fragments from genes encoding plastidic ACCases, but not from the very similar genes encoding cytosolic ACCases. Clear DNA sequences were obtained from fresh or dried plant material from the field, and from 29 various grass species. Sequences revealed that the gene encoding plastidic ACCase in Poa annua and Festuca rubra contained a Leu(1781) codon, in agreement with both species being inherently tolerant to herbicides inhibiting ACCase. Sequencing confirmed the hybrid origin of P. annua. Compared with ACCase enzyme assay, polymerase chain reaction is faster, can be performed from a single plant and suppresses the need for radioactive experiments. It can be completed with basic molecular biology laboratory equipment. It is the tool of choice for diagnosing resistance caused by alteration(s) of the plastidic ACCase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据