4.6 Article

Inelastic cotunneling-induced decoherence and relaxation, charge, and spin currents in an interacting quantum dot under a magnetic field

期刊

PHYSICAL REVIEW B
卷 72, 期 16, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.165326

关键词

-

向作者/读者索取更多资源

We present a theoretical analysis of several aspects of nonequilibrium cotunneling through a strong Coulomb-blockaded quantum dot (QD) subject to a finite magnetic field in the weak coupling limit. We carry this out by developing a generic quantum Heisenberg-Langevin equation approach leading to a set of Bloch dynamical equations which describe the nonequilibrium cotunneling in a convenient and compact way. These equations describe the time evolution of the spin variables of the QD explicitly in terms of the response and correlation functions of the free reservoir variables. This scheme not only provides analytical expressions for the relaxation and decoherence of the localized spin induced by cotunneling, but it also facilitates evaluations of the nonequilibrium magnetization, the charge current, and the spin current at arbitrary bias-voltage, magnetic field, and temperature. We find that all cotunneling events produce decoherence, but relaxation stems only from inelastic spin-flip cotunneling processes. Moreover, our specific calculations show that cotunneling processes involving electron transfer (both spin-flip and non-spin-flip) contribute to charge current, while spin-flip cotunneling processes are required to produce a net spin current in the asymmetric coupling case. We also point out that under the influence of a nonzero magnetic field, spin-flip cotunneling is an energy-consuming process requiring a sufficiently strong external bias-voltage for activation, explaining the behavior of differential conductance at low temperature: in particular, the splitting of the zero-bias anomaly in the charge current and a broad zero-magnitude window of differential conductance for the spin current near zero-bias-voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据