4.3 Article

Extracellular DNA and Type IV pili mediate surface attachment by Acidovorax temperans

出版社

SPRINGER
DOI: 10.1007/s10482-009-9320-0

关键词

Biofilm; Extracellular DNA; Type IV pili; Activated sludge

资金

  1. New Zealand Foundation for Research Science Technology
  2. University of Auckland

向作者/读者索取更多资源

Extracellular DNA can play a structural role in the microbial environment. Here evidence is presented that an environmental isolate of Acidovorax temperans utilises extracellular DNA for intercellular and cell-surface attachment and that Type IV pili and electrostatic interactions play a role in this interaction. Preliminary attempts to isolate and purify extracellular polysaccharides from A. temperans strain CB2 yielded significant amounts of DNA raising the question of whether this molecule was present as a structural component in the extracellular matrix. The role of DNA in attachment was indicated by experiments in which the addition of DNase to liquid medium inhibited the attachment of Acidovorax to glass wool. A Tn5 insertional mutant, lacking Type IV pili, was unable to initiate attachment. Addition of DNase caused rapid detachment of bound cells, but no detachment occurred when proteinase, RNase or inactivated DNase were used. Addition of MgCl2 also caused significant detachment, supporting the possible mechanistic role of electrostatic interactions in the attachment process. Although attachment was apparent in early to mid-log phase growth, surprisingly DNA was not detected in the culture supernatant until late stationary phase and coincided with an appreciable loss of cell viability. This suggests that during log-phase growth attachment is mediated by eDNA that is released in low quantities and/or is highly localised within the extracellular matrix and also that stationary phase DNA release through widespread cell lysis may be a separate and unrelated event.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据