4.3 Article

Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB′ mutant

出版社

SPRINGER
DOI: 10.1007/s10482-008-9243-1

关键词

Corynebacterium glutamicum; Lipomannan; mannosyltransferase; PimB '

资金

  1. Wellcome Trust [081569/Z/06/Z] Funding Source: Wellcome Trust
  2. MRC [G9901077] Funding Source: UKRI
  3. Medical Research Council [G9901077] Funding Source: researchfish
  4. Biotechnology and Biological Sciences Research Council Funding Source: Medline
  5. Medical Research Council [G9901077] Funding Source: Medline
  6. Wellcome Trust [081569/Z/06/Z] Funding Source: Medline

向作者/读者索取更多资源

The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) resulting in the accumulation of Ac(1)PIM(1) and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed 'Cg-LM-A') and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed 'Cg-LM-B'. Further chemical analyses established the lipoglycan possessed an alpha-D-glucopyranosyluronic acid-(1 --> 3)-glycerol (GlcAGroAc(2)) based anchor which was then further glycosylated by 8-22 mannose residues, with Man(12-20)GlcAGroAC(2) molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-alpha by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据