4.5 Article

Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 25, 期 20, 页码 9063-9072

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.20.9063-9072.2005

关键词

-

向作者/读者索取更多资源

The mechanism of cross talk between the Wnt signaling and cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]) pathways was studied. Prostaglandin E-1 (PGE(1)), isoproterenol, and dibutyryl cAMP (Bt(2)cAMP), all of which activate PKA, increased the cytoplasmic and nuclear P-catenin protein level, and these actions were suppressed by a PKA inhibitor and RNA interference for PKA. PGE(1) and Bt(2)cAMP also increased T-cell factor (Tcf)-dependent transcription through beta-catenin. Bt(2)cAMP suppressed degradation of beta-catenin at the protein level. Although PKA did not affect the formation of a complex between glycogen synthase kinase 3 beta (GSK-3 beta), beta-catenin, and Axin, phosphorylation of beta-catenin by PKA inhibited ubiquitination of beta-catenin in intact cells and in vitro. Ser675 was found to be a site for phosphorylation by PKA, and substitution of this serine residue with alanine in beta-catenin attenuated inhibition of the ubiquitination of beta-catenin by PKA, PKA-induced stabilization of beta-catenin, and PKA-dependent activation of Tcf. These results indicate that PKA inhibits the ubiquitination of beta-catenin by phosphorylating beta-catenin, thereby causing beta-catenin to accumulate and the Wnt signaling pathway to be activated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据