4.7 Article

Screening and identification of inhibitors against influenza A virus from a US drug collection of 1280 drugs

期刊

ANTIVIRAL RESEARCH
卷 109, 期 -, 页码 54-63

出版社

ELSEVIER
DOI: 10.1016/j.antiviral.2014.06.007

关键词

Influenza virus; Drug screening; Inhibitor

资金

  1. National Basic Research Program of China [2009CB522504]
  2. Important National Science 82 Technology Specific Projects [2009ZX09301-014]
  3. Knowledge Innovation Program of the Chinese Academy of Sciences [KSCX1-YW-10-03]

向作者/读者索取更多资源

Infection with influenza A virus is still a global concern since it causes significant mortality, morbidity and economic loss. New burst pandemics and rapid emergence of drug-resistance strains in recent years call for novel antiviral therapies. One promising way to overcome this problem is searching new inhibitors among thousands of drugs approved in the clinic for the treatment of different diseases or approved to be safe by clinical trials. In the present work, a collection of 1280 compounds, most of which have been clinically used in human or animal, were screened for anti-influenza activity and 41 hits (SI > 4.0) were obtained. Next the 18 hit compounds with SI >10.0 were tested for antiviral activity against 7 other influenza virus strains in canine-originated MDCK cells, 9 compounds exhibited broad antiviral spectrum. The antiviral effects of the 9 compounds were also confirmed in human-originated A549 cells and chicken-originated DFI cells, by infectious virus yield reduction assay and indirect immunofluorescent assay. Results from the time of addition assay showed that the 9 candidates impaired different stages of influenza virus life cycle, indicating they are novel inhibitors with different mechanisms compared with the existing M2 ion-channel blockers or neuraminidase (NA) inhibitors. Taken together, our findings provide 9 novel drug candidates for the treatment of influenza virus infection. Further mechanism of action study of these inhibitors may lead to the discovery of new anti-influenza targets and structure-activity relationship (SAR) study can be initiated to improve the efficacy of these new classes of influenza inhibitors. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据