4.5 Article Proceedings Paper

Quantum, cyclic, and particle-exchange heat engines

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2005.05.038

关键词

thermodynamics; three-level amplifier; photovoltaics; thermionics; thermoelectrics

向作者/读者索取更多资源

Differences between the thermodynamic behavior of the three-level amplifier (a quantum heat engine based oil a thermally pumped laser) and the classical Carnot cycle are usually attributed to the essentially quantum or discrete nature of the former. Here we provide examples of a number of classical and semiclassical heat engines, such as thermionic, thermoelectric and photovoltaic devices, which all utilize the same thermodynamic mechanism for achieving reversibility as the three-level amplifier, namely isentropic (but non-isothermal) particle transfer between hot and cold reservoirs. This mechanism is distinct from the isothermal heat transfer required to achieve reversibility in cyclic engines such as the Carnot, Otto or Brayton cycles. We point out that some of the qualitative differences previously uncovered between the three-level amplifier and the Carnot cycle may be attributed to the fact that they are not the same 'type' of heat engine, rather than to the quantum nature of the three-level amplifier per se. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据