4.8 Article

Protein capture in silica nanotube membrane 3-D microwell arrays

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 19, 页码 6243-6249

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0508907

关键词

-

向作者/读者索取更多资源

The microarray format has allowed for rapid and sensitive detection of thousands of analyte DNAs in a single sample, and there is considerable interest in extending this technology to protein biosensing. While glass is the most common substrate for microarrays, its binding capacity is limited because the glass surface is flat. One way to overcome this limitation is to develop arrays based on porous materials. Such 3-D arrays can provide greater sensitivity because both the capture molecules and the analyte species they bind are immobilized throughout the thickness of the porous material. We describe here 3-D protein microarrays based on nanopore alumina membranes that contain silica nanotubes within the pores. These microarrays; are prepared via a plasma-etch method using a TEM grid as the etch mask and consist of individual nanotube-containing microwells imbedded in a Ag film that coats the alumina membrane surface. We show that the microwells can be functionalized with antibodies and that these antibodies can capture their antigen proteins, which serve as prototype analytes. The analyte proteins are fluorescently tagged, which allows for fluorescence microscopy-based imaging of the array. The Ag surrounding the microwells shows very low background fluorescence, thus improving the signal-background ratio obtained from these arrays.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据