4.6 Article

Quantum scattering in quasi-one-dimensional cylindrical confinement

期刊

PHYSICAL REVIEW A
卷 72, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.042711

关键词

-

向作者/读者索取更多资源

Finite-size effects not only alter the energy levels of small systems, but can also lead to additional effective interactions within these systems. Here the problem of low-energy quantum scattering by a spherically symmetric short-range potential in the presence of a general cylindrical confinement is investigated. A Green's function formalism is developed which accounts for the full three-dimensional (3D) nature of the scattering potential by incorporating all phase shifts and their couplings. This quasi-1D geometry gives rise to scattering resonances and weakly localized states, whose binding energies and wave functions can be systematically calculated. Possible applications include, e.g., impurity scattering in ballistic quasi-1D quantum wires in mesoscopic systems and in atomic matter-wave guides. In the particular case of parabolic confinement, the present formalism can also be applied to pair collision processes such as two-body interactions. Weakly bound pairs and quasimolecules induced by the confinement and having zero or higher orbital angular momentum can be predicted, such as p- and d-wave pairings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据