4.7 Article

The effect of proton disorder on the structure of ice-Ih: A theoretical study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2036971

关键词

-

向作者/读者索取更多资源

A precise and accurate measurement of the crystal structure of ice-Ih is hindered by its disordered H-bond network. In this work, we carried out first-principle calculations to study the effects of H-bond topology on the structure of ice-Ih with emphasis on the molecular geometry of water and the distortion in oxygen lattice. An analytic algorithm based on group and graph theory is employed to enumerate all possible configurations in a given unit cell and to select a set of structures for detailed examinations. In total we have studied more than 60 ice-Ih structures in a hexagonal unit cell of 48 water molecules by quantum-chemical methods and found a significant amount of static distortion in the oxygen positions from their crystallographic positions which is in good agreements with highly significant higher-order terms obtained from both x-ray and neutron-diffraction data. Much debated structural information such as H-O-H angle and O-H bond length is found to be 106.34 +/- 0.36 degrees and 0.9997 +/- 0.0008 A, compared to experimental value of 106.6 +/- 1.5 degrees and 0.986 +/- 0.005 A. Detailed benchmarking calculations were carried out to gauge the influence of using different exchange and correlation functionals, pseudopotentials, and unit-cell sizes. Our results have proven that first-principle methods are useful complementary tools to experiments, especially for cases in which experimental accuracy is limited by intrinsic orientational disorder. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据