4.7 Article

What leads to reduced fitness in non-photochemical quenching mutants?

期刊

PHYSIOLOGIA PLANTARUM
卷 125, 期 2, 页码 202-211

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1399-3054.2005.00547.x

关键词

-

向作者/读者索取更多资源

Feedback de-excitation (FDE) is a process that protects photosystem II from damage during short periods of overexcitation. Arabidopsis thaliana mutants lacking this mechanism have reduced fitness in environments with variable light intensities. We have assayed the physiological consequences of mutations resulting in the lack of FDE and analysed the differences between field-grown plants and plants grown under fluctuating light in the laboratory. We show that FDE is an important mechanism in short-term responses to fluctuating light. Anthocyanin and carbohydrate levels indicated that the mutant plants were stressed to a higher degree than wild-type (WT) plants. Field-grown mutants were photo-inactivated to a greater degree than WT, whereas mutant plants in the fluctuating light environment in the laboratory seemed to downregulate the photosynthetic quantum yield, thereby avoiding photo-damage but resulting in impaired growth in the case of one mutant. Finally, we provide evidence that FDE is most important under conditions when photosynthesis limits plant growth, for example during flower and seed development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据