4.8 Review

Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins

期刊

PLANT CELL
卷 17, 期 10, 页码 2817-2831

出版社

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.105.034330

关键词

-

资金

  1. NCRR NIH HHS [P20 RR 15588, P20 RR015588] Funding Source: Medline

向作者/读者索取更多资源

Cell-to-cell communication in plants involves the trafficking of macromolecules through specialized intercellular organelles, termed plasmodesmata. This exchange of proteins and RNA is likely regulated, and a role for protein phosphorylation has been implicated, but specific components remain to be identified. Here, we describe the molecular characterization of a plasmodesmal-associated protein kinase (PAPK). A 34-kD protein, isolated from a plasmodesmal preparation, exhibits calcium-independent kinase activity and displays substrate specificity in that it recognizes a subset of viral and endogenous non-cell-autonomous proteins. This PAPK specifically phosphorylates the C-terminal residues of tobacco mosaic virus movement protein (TMV MP); this posttranslational modification has been shown to affect MP function. Molecular analysis of purified protein established that tobacco (Nicotiana tabacum) PAPK is a member of the casein kinase I family. Subcellular localization studies identified a possible Arabidopsis thaliana PAPK homolog, PAPK1. TMV MP and PAPK1 are colocalized within cross-walls in a pattern consistent with targeting to plasmodesmata. Moreover, Arabidopsis PAPK1 also phosphorylates TMV MP in vitro at its C terminus. These results strongly suggest that Arabidopsis PAPK1 is a close homolog of tobacco PAPK. Thus, PAPK1 represents a novel plant protein kinase that is targeted to plasmodesmata and may play a regulatory role in macromolecular trafficking between plant cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据