4.5 Article

SNARE-driven, 25-millisecond vesicle fusion in vitro

期刊

BIOPHYSICAL JOURNAL
卷 89, 期 4, 页码 2458-2472

出版社

CELL PRESS
DOI: 10.1529/biophysj.105.062539

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM056827, GM 56827] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH061876, MH61876] Funding Source: Medline

向作者/读者索取更多资源

Docking and fusion of single proteoliposomes reconstituted with full-length v-SNAREs ( synaptobrevin) into planar lipid bilayers containing binary t-SNAREs ( anchored syntaxin associated with SNAP25) was observed in real time by wide-field fluorescence microscopy. This enabled separate measurement of the docking rate k(dock) and the unimolecular fusion rate k(fus). On low t-SNARE-density bilayers at 37 degrees C, docking is efficient: k(dock) = 2.2 x 3 10(7) M-1 s(-1), similar to 40% of the estimated diffusion limited rate. Full vesicle fusion is observed as a prompt increase in fluorescence intensity from labeled lipids, immediately followed by outward radial diffusion ( D-lipid = 0.6 mu m(2) s(-1)); similar to 80% of the docked vesicles fuse promptly as a homogeneous subpopulation with k(fus) = 40 +/- 15 s(-1) (tau(fus) = 25 ms). This is 10(3) - 10(4) times faster than previous in vitro fusion assays. Complete lipid mixing occurs in, 15 ms. Both the v-SNARE and the t-SNARE are necessary for efficient docking and fast fusion, but Ca2+ is not. Docking and fusion were quantitatively similar on syntaxin-only bilayers lacking SNAP25. At present, in vitro fusion driven by SNARE complexes alone remains; 40 times slower than the fastest, submillisecond presynaptic vesicle population response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据