4.6 Article

PTEN enters the nucleus by diffusion

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 96, 期 2, 页码 221-234

出版社

WILEY
DOI: 10.1002/jcb.20525

关键词

phosphatase; phosphatidylinositol; nucleus; signal transduction; FRAP

资金

  1. NCI NIH HHS [P01 CA82834] Funding Source: Medline
  2. NINDS NIH HHS [NS21716] Funding Source: Medline

向作者/读者索取更多资源

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that nuclear translocation of PTEN occurs via diffusion. We examined PTEN mutants, seeking to identify a nuclear localization signal (NLS) for PTEN. Mutation of K13 and R14 decreased nuclear localization, but these amino acids do not appear to be part of an NLS. We used fluorescence recovery after photobleaching (FRAP) to demonstrate that GFP-PTEN can passively pass through nuclear pores. Diffusion in the cytoplasm is retarded for the PTEN mutants that show reduced nuclear localization. We conclude that PTEN enters the nucleus by diffusion. In addition, sequestration of PTEN in the cytoplasm likely limits PTEN nuclear translocation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据