4.8 Article

Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 19, 页码 6134-6139

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac051357u

关键词

-

资金

  1. NIDDK NIH HHS [DK066990-01A1] Funding Source: Medline

向作者/读者索取更多资源

A new, mixed decanethiol (DT)/mercaptohexanol (MH) partition layer with dramatically improved properties has been developed for glucose sensing by surface-enhanced Raman spectroscopy. This work represents significant progress toward our long-term goal of a minimally invasive, continuous, reusable glucose sensor. The DT/MH-functionalized surface has greater temporal stability, demonstrates rapid, reversible partitioning and departitioning, and is simpler to control compared to the tri-(ethylene glycol) monolayer used previously. The data herein show that this DT/MH-functionalized surface is stable for at least 10 days in bovine plasma. Reversibility is demonstrated by exposing the sensor alternately to 0 and 100 mM aqueous glucose solutions (pH similar to 7). The difference spectra show that complete partitioning and departitioning occur. Furthermore, physiological levels of glucose in two complex media were quantified using multivariate analysis. In the first system, the sensor is exposed to a solution consisting of water with 1 mM lactate and 2.5 mM urea. The root-mean-squared error of prediction (RMSEP) is 92.17 mg/dL (5.12 mM) with 87% of the validation points falling within the A and B range of the Clarke error grid. In the second, more complex system, glucose is measured in the presence of bovine plasma. The RMSEP is 83.16 mg/dL (4.62 mM) with 85% of the validation points falling within the A and B range of the Clarke error grid. Finally, to evaluate the real-time response of the sensor, the 1/e time constant for glucose partitioning and departitioning in the bovine plasma environment was calculated. The time constant is 28 s for partitioning and 25 s for departitioning, indicating the rapid interaction between the SAM and glucose that is essential for continuous sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据