4.7 Article

A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations

期刊

ULTRASONICS
卷 43, 期 9, 页码 717-731

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2005.05.001

关键词

structural health monitoring; diffuse ultrasonic waves; temperature compensation

向作者/读者索取更多资源

Diffuse ultrasonic waves for structural health monitoring offer the advantages of simplicity of signal generation and reception, sensitivity to damage, and large area coverage; however, there are the serious disadvantages of no accepted methodology for analyzing the complex recorded signals and sensitivity to environmental changes such as temperature and surface conditions. Presented here is a methodology for applying diffuse ultrasonic waves to the problem of detecting structural damage in the presence of unmeasured temperature changes. This methodology is based upon the prediction and observation that the first order effect of a temperature change on a diffuse ultrasonic wave is a time dilation or compression. A multi-step procedure is implemented to (1) record a set of baseline waveforms from the undamaged specimen at temperatures spanning the expected operating range, (2) select a waveform. from the baseline set whose temperature is the closest to that of a subsequently measured signal, (3) adjust this baseline waveform to best match the signal, and (4) calculate an error parameter between the signal and the adjusted waveform and compare this parameter to a threshold to determine the structural status. This procedure is applied to experimental data from aluminum plate specimens with artificial flaws. Probability of detection and the minimum flaw size detected are presented as a function of the size of the baseline waveform set. It is shown that a probability of detection of over 95% can be achieved with a small number of baseline waveforms. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据