4.5 Article

Effect of A-site cation radius on ordering of BX6 octahedra in (K,Na)MgF3 perovskite

期刊

AMERICAN MINERALOGIST
卷 90, 期 10, 页码 1522-1533

出版社

MINERALOGICAL SOC AMER
DOI: 10.2138/am.2005.1693

关键词

-

向作者/读者索取更多资源

We present a structural model for (K,Na)MgF3 perovskite using results from high-resolution synchrotron X-ray powder diffraction and nuclear magnetic resonance (NMR) spectroscopy. (K,Na)MgF3 perovskite is found to transition from orthorhombic (Pbnm) to tetragonal (P4/mbm) to cubic (Pm (3) over barm) as potassium concentration is increased. These phase transitions are not accompanied by a discontinuity in pseudo-cubic unit-cell volume and occur close to compositions (K0.37Na0.63)MgF3 and (K0.47Na0.53)MgF3, respectively. F-19 NMR spectra indicate that the Na+ and K+ cations do not occupy the A cation site at random and end-member local environments are favored for all compositions. Based on results from both X-ray diffraction and NMR, we propose that diffuse diffraction is the result of strain between coexisting regions of different octahedra (MgF6) tilts brought about by the ionic radius mismatch of Na+ and K+ cations. We suggest A-site cations group with like cations as neighbors to reduce excess volume and total strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据