4.7 Article

Glutathione Stimulates Vitamin D Regulatory and Glucose-Metabolism Genes, Lowers Oxidative Stress and Inflammation, and Increases 25-Hydroxy-Vitamin D Levels in Blood: A Novel Approach to Treat 25-Hydroxyvitamin D Deficiency

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 29, 期 17, 页码 1792-1807

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2017.7462

关键词

glutathione; 25-hydroxyvitamin D; vitamin D binding protein; vitamin D receptor; inflammation; insulin resistance

资金

  1. NIH [R01 AT007442]
  2. Malcolm Feist Endowed Chair in Diabetes

向作者/读者索取更多资源

Aims: 25-Hydroxyvitamin D [25(OH)VD] deficiency/inadequacy is a major public health issue affecting more than 1 billion people worldwide. A convincing association exists between low levels of circulating 25(OH)VD and the poor health outcomes associated with chronic diseases. However, high supraphysiological doses of VD are needed to achieve the required 25(OH)VD levels in the blood, because many subjects respond poorly to supplementation. Results: This study reports a link between 25(OH)VD deficiency and a reduction in glutathione (GSH) in obese adolescents. The improvement in GSH status that results from cosupplementation with VD and l-cysteine (LC; a GSH precursor) significantly reduced oxidative stress in a mouse model of 25(OH)VD deficiency. It also positively upregulated VD regulatory genes (VDBP/VD-25-hydroxylase/VDR) in the liver and glucose metabolism genes (PGC-1/VDR/GLUT-4) in muscle, boosted 25(OH)VD, and reduced inflammation and insulin resistance (IR) levels in the blood compared with supplementation with VD alone. In vitro GSH deficiency caused increased oxidative stress and downregulation of VDBP/VD-25-hydroxylase/VDR and upregulation of CYP24a1 in hepatocytes and downregulation of PGC-1/VDR/GLUT-4 in myotubes. This study demonstrates that improvement in the GSH status exerts beneficial effects on the blood levels of 25(OH)VD, as well as on the inflammation and IR in a VD-deficient mouse model. Thus, the VD supplements widely consumed by the public are unlikely to be successful unless the GSH status is also corrected. Innovation: These studies demonstrate a previously undiscovered mechanism by which GSH status positively upregulates the bioavailability of 25(OH)VD. Conclusion: Supplementation with a combination of VD and LC or GSH precursor, rather than supplementation with VD alone, is beneficial and helps achieve more successful VD supplementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据