4.5 Article

Ribosome rescue:: tmRNA tagging activity and capacity in Escherichia coli

期刊

MOLECULAR MICROBIOLOGY
卷 58, 期 2, 页码 456-466

出版社

WILEY
DOI: 10.1111/j.1365-2958.2005.04832.x

关键词

-

资金

  1. NIAID NIH HHS [AI-16892] Funding Source: Medline

向作者/读者索取更多资源

When protein synthesis stalls in bacteria, tmRNA acts first as a surrogate tRNA and then as an mRNA in a series of reactions that append a peptide tag to the nascent polypeptide and 'rescue' the ribosome. The peptide tag encoded by wild-type tmRNA promotes rapid degradation of rescued proteins. Using a mutant tmRNA that encodes a tag that does not lead to degradation, we demonstrate that the synthesis of approximately 0.4% of all proteins terminates with tagging and ribosome rescue during normal exponential growth of Escherichia coli. The frequency of tagging was not significantly increased in cells expressing very high levels of tmRNA and its binding protein SmpB, suggesting that recognition of 'stalled' ribosomes does not involve competition between tmRNA and other translation factors for A-sites that are unoccupied transiently during protein synthesis. When the demand for ribosome rescue was increased artificially by overproduction of a non-stop mRNA, tmRNA levels did not increase but tmRNA-mediated tagging increased substantially. Thus, the ribosome-rescue system usually operates well below capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据