4.7 Article

Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites

期刊

ACTA MATERIALIA
卷 53, 期 18, 页码 4817-4824

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2005.06.025

关键词

dislocations; nanostructured materials; thin films

向作者/读者索取更多资源

Nano-indentation hardness as a function of bilayer period has been measured for sputter-deposited Cu-Nb multilayers. For this face-centered cubic/body-centered cubic system with incoherent interfaces, we develop dislocation models for the multilayer flow strength as a function of length scale from greater than a micrometer to less than a nanometer. A dislocation pile-up-based Hall-Petch model is found applicable at the sub-micrometer length scales and the Hall-Petch slope is used to estimate the peak strength of the multilayers. At the few to a few tens of nanometers length scales, confined layer slip of single dislocations is treated as the operative mechanism. The effects of dislocation core spreading along the interface, interface stress and interface dislocation arrays on the confined layer slip stress are incorporated in the model to correctly predict the strength increase with decreasing layer thickness. At layer thicknesses of a few nanometers or less, the strength reaches a peak. We postulate that this peak strength is set by the interface resistance to single dislocation transmission, and calculate the transition from confined layer slip to an interface cutting mechanism. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据