4.7 Article

Periodic-orbit theory of universality in quantum chaos -: art. no. 046207

期刊

PHYSICAL REVIEW E
卷 72, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.046207

关键词

-

向作者/读者索取更多资源

We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(tau) as power series in the time tau. Each term tau(n) of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve nontrivial properties of permutations. We show our series to be equivalent to perturbative implementations of the nonlinear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs have a one-to-one relationship with Feynman diagrams known from the sigma model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据