4.7 Article

The Gasotransmitter Hydrogen Sulfide Induces Nrf2-Target Genes by Inactivating the Keap1 Ubiquitin Ligase Substrate Adaptor Through Formation of a Disulfide Bond Between Cys-226 and Cys-613

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 19, 期 5, 页码 465-481

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.4944

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council Ph.D. studentship under the BBSRC Industrial CASE Partnership scheme [BB/E528995/1]
  2. Cancer Research-UK [C4909/A13786]

向作者/读者索取更多资源

Aims: The signaling molecule hydrogen sulfide (H2S) protects cells against oxidative stress and activates NF-E2 p45-related factor 2 (Nrf2), a transcription factor that regulates antioxidant genes. We sought to establish whether H2S requires Nrf2 to protect against oxidative stress, and whether activation of Nrf2 by H2S involves antagonism of Kelch-like ECH-associated protein-1 (Keap1), a redox-sensitive ubiquitin ligase substrate adaptor that represses Nrf2 under normal homeostatic conditions. Results: H2S stabilizes Nrf2 protein and induces Nrf2-target genes via an antioxidant-/electrophile-response element. In mouse embryonic fibroblasts, the ability of H2S to protect against cell death caused by the redox-cycling agent menadione is dependent on Nrf2. Moreover, Nrf2 regulates murine genes involved in the production of H2S (Cystathionine-beta-synthase [Cbs] and Cystathionine-gamma-lyase [Cse]) and the degradation of H2S (Sulfide: quinone reductase-like [yeast] [Sqrdl]). We found that H2S stabilizes Nrf2 through inhibition of Keap1, an event that requires covalent modification of amino acids C226 and C613 in the substrate adaptor. Upregulation of Nrf2 by H2S partially involves the production of H2O2, which inhibits Keap1 by stimulating the formation of an intramolecular disulfide bond between C226 and C613. The Keap1 C226 and C613 residues are also S-sulfhydrated by H2S, and this may entail reduction of the C226-C613 disulfide bridge formed by H2O2. Innovation: Upregulation of Nrf2 by H2S and H2O2 involves inactivation of Keap1 through modification of C226 and C613. Conclusion: Inhibition of Keap1 by H2S leads to Nrf2-mediated induction of cytoprotective genes. Nrf2 controls Cbs, Cse, and Sqrdl, suggesting that a feedback loop exists between Nrf2 and H2S.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据