4.7 Article

Studies of Mitochondrial and Nonmitochondrial Sources Implicate Nicotinamide Adenine Dinucleotide Phosphate Oxidase(s) in the Increased Skeletal Muscle Superoxide Generation That Occurs During Contractile Activity

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 18, 期 6, 页码 603-621

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.4623

关键词

-

资金

  1. Wellcome Trust [073263/Z/03]
  2. U.S. National Institute on Aging [AG-20591]
  3. Alexander S. Onassis Public Benefit foundation (Greece)
  4. MRC [G1002120, MR/K006312/1] Funding Source: UKRI
  5. Medical Research Council [MR/K006312/1, G1002120] Funding Source: researchfish

向作者/读者索取更多资源

Aims: The sources of cytosolic superoxide in skeletal muscle have not been defined. This study examined the subcellular sites that contribute to cytosolic superoxide in mature single muscle fibers at rest and during contractile activity. Results: Isolated fibers from mouse flexor digitorum brevis loaded with superoxide and nitricoxide-sensitive fluorescent probes, specific pathway inhibitors and immunolocalization techniques were used to identify subcellular sites contributing to cytosolic superoxide. Treatment with the electron transport chain complex III inhibitor, antimycin A, but not the complex I inhibitor, rotenone, caused increased cytosolic superoxide through release from the mitochondrial intermembrane space via voltage-dependent anion or Bax channels, but inhibition of these channels did not affect contraction-induced increases in cytosolic superoxide. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors decreased cytosolic superoxide at rest and following contractions. Protein and mRNA expression of NADPH oxidase subunits was demonstrated in single fibers. NOX2, NOX4, and p22(phox) subunits localized to the sarcolemma and transverse tubules; NOX4 was additionally expressed in mitochondria. Regulatory p40(phox) and p67(phox) proteins were found in the cytoplasm of resting fibers, but following contractions, p40(phox) appeared to translocate to the sarcolemma. Innovation: Superoxide and other reactive oxygen species generated by skeletal muscle are important regulators of muscle force production and adaptations to contractions. This study has defined the relative contribution of mitochondrial and cytosolic sources of superoxide within the cytosol of single muscle fibers at rest and during contractions. Conclusion: Muscle mitochondria do not modulate cytosolic superoxide in skeletal muscle but NADPH oxidase is a major contributor both at rest and during contractions. Antioxid. Redox Signal. 18, 603-621.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据