4.4 Article

Evolutionary conservation of Ceratitis capitata transformer gene function

期刊

GENETICS
卷 171, 期 2, 页码 615-624

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.105.041004

关键词

-

向作者/读者索取更多资源

Transformer functions as a binary switch gene in the sex determination and sexual differentiation of Drosophila melanogaster and Ceratitis capitata, two insect species that separated nearly 100 million years ago. The TRA protein is required for female differentiation of XX individuals, while XY individuals express smaller, presumably nonfunctional TRA peptides and consequently, develop into adult males. In both species, tra confers female sexual identity through a well-conserved double-sex gene. However, unlike Drosophila tra, which is regulated by the upstream Sex-lethal gene, Ceratitis tra itself is likely to control a feedback loop that ensures the maintenance of the female sexual state. The putative CcTRA protein shares a very low degree of sequence identity with the TRA proteins from Drosophila species. However, in this study we show that a female-specific Ceratitis CctracDNA encoding the putative full-length CcTRA protein is able to support the female somatic and germline sexual differentiation of D. melanogaster XX; tra. mutant adults. Although highly divergent, CcTRA can functionally substitute for DmTRA and induce the female-specific expression of both Dmdsx and Dmfru genes. These data demonstrate the unusual plasticity of the TRA protein that retains a conserved function despite the high evolutionary rate. We Suggest that transformer plays all important role in providing a molecular basis for the variety of sex-determining systems seen among insects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据