4.7 Article

Endothelial Peroxisomal Dysfunction and Impaired Pexophagy Promotes Oxidative Damage in Lipopolysaccharide-Induced Acute Kidney Injury

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 19, 期 3, 页码 211-230

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.4768

关键词

-

资金

  1. Dr. Werner Jackstaedt Foundation
  2. National Institutes of Health and Westchester Artificial Kidney Foundation [DK54602, DK052783, DK45462]

向作者/读者索取更多资源

Aims: We examined that (a) how the endotoxic stress affects peroxisomal function and autophagic degradation of peroxisomes-pexophagy, (b) how a superimposed dysfunction of lysosomes and pexophagy modifies responses to lipopolysaccharide (LPS), and (c) the mechanisms of peroxisomal contribution to renal injury. To accomplish this, we used lysosome-defective Lyst-mice in vivo and primary endothelial cells in vitro, and compared the responses with wild-type (WT) littermates. Results: LPS induced pexophagic degradation, followed by proliferation of peroxisomes in WT mice, which was abolished in Lyst-mice. Lyst-mice exhibited impaired activation of catalase, which together with preserved hydrogen peroxide-generating beta-oxidation resulted in redox disequilibrium. LPS treatment induced a heightened inflammatory response, increased oxidative damage, and aggravated renal injury in Lyst-mice. Similarly, as in vivo, LPS-activated lysosomal (LYS) pexophagy and transiently repressed peroxisomes in vitro, supported by reduced peroxisomal density in the vicinity of lysosomes. Peroxisomal dynamics was also abolished in lysosome-defective cells, which accumulated peroxisomes with compromised functions and intraorganellar redox imbalance. Innovation: We demonstrated that pexophagy is a default response to endotoxic injury. However, when LYS dysfunction (a frequent companion of chronic diseases) is superimposed, recycling and functioning of peroxisomes are impaired, and an imbalance between hydrogen peroxide-generating beta-oxidation and hydrogen peroxide-detoxifying catalase ensues, which ultimately results in peroxisomal burnout. Conclusion: Our data strongly suggest that pexophagy, a cellular mechanism per se, is essential in functional maintenance of peroxisomes during LPS exposure. Inhibition of pexophagy results in accumulation of impaired peroxisomes, redox disequilibrium, and aggravated renal damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据