4.7 Editorial Material

Redox Proteomics

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 17, 期 11, 页码 1487-1489

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2012.4742

关键词

-

向作者/读者索取更多资源

Proteins are major targets of reactive oxygen and nitrogen species (ROS/RNS) and numerous post-translational, reversible or irreversible modifications have been characterized, which may lead to a change in the structure and/or function of the oxidized protein. Redox proteomics is an increasingly emerging branch of proteomics aimed at identifying and quantifying redox-based changes within the proteome both in redox signaling and under oxidative stress conditions. Correlation between protein oxidation and human disease is widely accepted, although elucidating cause and effect remains a challenge. Increasing biomedical data have provided compelling evidences for the involvement of perturbations in redox homeostasis in a large number of pathophysiological conditions and aging. Research toward a better understanding of the molecular mechanisms of a disease together with identification of specific targets of oxidative damage is urgently required. This is the power and potential of redox proteomics. In the last few years, combined proteomics, mass spectrometry (MS), and affinity chemistry-based methodologies have contributed in a significant way to provide a better understanding of protein oxidative modifications occurring in various biological specimens under different physiological and pathological conditions. Hence, this Forum on Redox Proteomics is timely. Original and review articles are presented on various subjects ranging from redox proteomics studies of oxidatively modified brain proteins in Alzheimer disease and animal models of Alzheimer and Parkinson disease, to potential new biomarker discovery paradigm for human disease, to chronic kidney disease, to protein nitration in aging and age-related neurodegenerative disorders, electrophile-responsive proteomes of special relevance to diseases involving mitochondrial alterations, to cardiovascular physiology and pathology. Antioxid. Redox Signal. 17, 1487-1489.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据