4.8 Article

Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy

期刊

BIOMATERIALS
卷 26, 期 29, 页码 5801-5807

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.02.029

关键词

shape memory alloys; biocompatibility; cytokines; leukocytes; porosity; nickel-titanium alloys

向作者/读者索取更多资源

Disks consisting of macroporous nickel-titanium alloy (NiTi, Nitinol (R), Actipore (R)) are used as implants in clinical surgery, e.g. for fixation of spinal dysfunctions. The morphological properties were studied by scanning electron microscopy (SEM) and by synchrotron radiation-based microtomography (SR mu CT). The composition was studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and energy-dispersive X-ray spectroscopy (EDX). The mechanical properties were studied with temperature-dependent dynamical mechanical analysis (DMA). Studies on the biocompatibility were performed by co-incubation of porous NiTi samples with isolated peripheral blood leukocyte fractions (polymorphonuclear neutrophil granulocytes, PMN; peripheral blood mononuclear leukocytes, PBMC) in comparison with control cultures without NiTi samples. The cell adherence to the NiTi surface was analyzed by fluorescence microscopy and scanning electron microscopy. The activation of adherent leukocytes was analyzed by measurement of the released cytokines using enzyme-linked immunosorbent assay (ELISA). The cytokine response of PMN (analyzed by the release of IL-1ra and IL-8) was not significantly different between cell cultures with or without NiTi. There was a significant increase in the release of IL-1ra (p < 0.001), IL-6 (p < 0.05), and IL-8 (p < 0.05) from PBMC in the presence of NiTi samples. In contrast, the release of TNF-alpha by PBMC was not significantly elevated in the presence of NiTi. IL-2 was released from PBMC only in the range of the lower detection limit in all cell cultures. The material, clearly macroporous with an interconnecting porosity, consists of NiTi (martensite; monoclinic, and austenite; cubic) with small impurities of NiTi2 and possibly NiCx,. The material is not superelastic upon manual compression and shows a good biocompatibility. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据