4.7 Article

Thyroid Function Is Maintained Despite Increased Oxidative Stress in Mice Lacking Selenoprotein Biosynthesis in Thyroid Epithelial Cells

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 17, 期 6, 页码 902-913

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2011.4055

关键词

-

资金

  1. Deutscher Akademischer Ausstauschdienst (DAAD)
  2. JCCM
  3. Charite-Universitatsmedizin Berlin
  4. Deutsche Krebshilfe
  5. Deutsche Forschungsgemeinschaft [SFB665]

向作者/读者索取更多资源

Aims: We have tested the hypothesis that selenium (Se)-containing antioxidative enzymes protect thyroid epithelial cells from oxidative damage associated with enzymatic production of hydrogen peroxide required for thyroid hormone biosynthesis. Thyroid epithelial cells therefore express antioxidative enzymes, including catalase, peroxiredoxins, thioredoxin reductases, and glutathione peroxidases (GPxs). The latter two enzyme families contain highly active peroxide-degrading enzymes that carry selenocysteine (Sec) in their active centers. Since low Se status has been associated with thyroid disorders, selenoproteins are considered essential for thyroid integrity and function. We have conditionally inactivated selenoprotein biosynthesis in thyrocytes by targeting Sec tRNA. Results: Constitutive and inducible Cre/loxP-mediated recombination of tRNA([Ser]Sec) drastically reduced activities of selenoenzymes GPx and type I-deiodinase in thyroid extracts. Immunohistochemical staining revealed increased 4-hydroxynonenal and 3-nitro-tyrosine levels consistent with increased oxidative stress. However, gross thyroid morphology remained intact for at least 6 months after recombination. Circulating thyroid hormone levels remained normal in mutant mice, while thyrotropin (TSH) levels were moderately elevated. Challenging mutant mice with low iodine diet increased TSH, but did not lead to destruction of selenoprotein-deficient thyroids. Innovation: This is the first report probing the assumed physiological roles of selenoproteins in the thyroid using a genetic loss-of-function approach. Conclusion: We conclude that selenoproteins protect thyrocytes from oxidative damage and modulate thyroid hormone biosynthesis, but are not essential for thyrocyte survival. Antioxid. Redox Signal. 17, 902-913.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据