4.7 Article

High Turnover Rates for Hydrogen Sulfide Allow for Rapid Regulation of Its Tissue Concentrations

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 17, 期 1, 页码 22-31

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2011.4310

关键词

-

资金

  1. National Institutes of Health [DK64959, HL58984]

向作者/读者索取更多资源

Aims: Hydrogen sulfide (H2S) is a signaling molecule, which influences many physiological processes. While H2S is produced and degraded in many cell types, the kinetics of its turnover in different tissues has not been reported. In this study, we have assessed the rates of H2S production in murine liver, kidney, and brain homogenates at pH 7.4, 37 degrees C, and at physiologically relevant cysteine concentrations. We have also studied the kinetics of H2S clearance by liver, kidney, and brain homogenates under aerobic and anaerobic conditions. Results: We find that the rate of H2S production by these tissue homogenates is considerably higher than background rates observed in the absence of exogenous substrates. An exponential decay of H2S with time is observed and, as expected, is significantly faster under aerobic conditions. The half-life for H2S under aerobic conditions is 2.0, 2.8, and 10.0 min with liver, kidney, and brain homogenate, respectively. Western-blot analysis of the sulfur dioxygenase, ETHE1, involved in H2S catabolism, demonstrates higher steady-state protein levels in liver and kidney versus brain. Innovation: By combining experimental and simulation approaches, we demonstrate high rates of tissue H2S turnover and provide estimates of steady-state H2S levels. Conclusion: Our study reveals that tissues maintain a high metabolic flux of sulfur through H2S, providing a rationale for how H2S levels can be rapidly regulated. Antioxid. Redox Signal. 17, 22-31.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据