4.6 Article

Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields

期刊

PHYSICAL REVIEW B
卷 72, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.165102

关键词

-

向作者/读者索取更多资源

Effective electromagnetic properties of negative index of refraction metamaterials (NIMs) can be hard to measure. We show through simulations that electromagnetic fields inside a typical, physically realizable wire-SRR (split ring resonator) NIM are more homogeneous than one might expect inside such metamaterials, and sufficiently structured to be useful for interpretation. Specifically, simulations show that the electric field phase is surprisingly smooth inside the NIM, including at the edges of the material, and can thus be used to reliably estimate the effective length of the material, a critical parameter when determining the effective material properties using many methods. The effective length, together with amplitude and phase measurements inside the material, can further be used to measure with good precision and minimum ambiguity the effective material properties of a NIM. To validate this technique, we show that the material properties obtained using it very closely match those derived from S parameters. The inherent redundancy in the field data makes this method less sensitive to measurement errors than one based on transmission/reflection measurements, thus making it suitable for simulations and for experiments. We also show that, for experiments, given the periodicity of the NIM, one measurement per cell is generally enough to retrieve with good precision these material properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据